hse365平台-mobile365官网是多少-英国365网站最近怎么了

幂级数的妙用

幂级数的妙用

文章目录

一、幂级数是什么?二、常见的幂级数三、幂级数重要结论:在收敛域内可逐项求导和积分四、用幂级数求数项级数的和五、用幂级数求数列通项公式六、用幂级数解微分方程

一、幂级数是什么?

由常数项乘以幂函数组成的无穷级数:

n

=

0

c

n

x

n

=

c

0

+

c

1

x

+

c

2

x

2

+

c

3

x

3

+

\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots

n=0∑∞​cn​xn=c0​+c1​x+c2​x2+c3​x3+… 它在

(

R

,

R

)

(-R,R)

(−R,R)内一定收敛,通常是否取到端点要具体讨论。这里

R

=

1

/

lim

n

c

n

+

1

c

n

R=1\Big/\lim _{n \rightarrow \infty}\left|\frac{c_{n+1} }{c_{n}}\right|

R=1/limn→∞​∣∣∣​cn​cn+1​​∣∣∣​,且

R

R

R 可以为0或无穷大。

二、常见的幂级数

1

1

x

=

1

+

x

+

x

2

+

x

3

+

x

4

+

=

n

=

0

x

n

,

x

(

1

,

1

)

\frac{1}{1-x} = 1+x+x^{2}+x^{3}+x^{4}+\ldots =\sum_{n=0}^{\infty} x^{n}, \quad x \in(-1,1)

1−x1​=1+x+x2+x3+x4+…=n=0∑∞​xn,x∈(−1,1)

e

x

=

1

+

x

+

x

2

2

!

+

x

3

3

!

+

x

4

4

!

+

=

n

=

0

x

n

n

!

,

x

R

e^{x} =1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\frac{x^{4}}{4 !}+\ldots =\sum_{n=0}^{\infty} \frac{x^{n}}{n !}, \quad x \in R

ex=1+x+2!x2​+3!x3​+4!x4​+…=n=0∑∞​n!xn​,x∈R

cos

x

=

1

x

2

2

!

+

x

4

4

!

x

6

6

!

+

x

8

8

!

=

n

=

0

(

1

)

n

x

2

n

(

2

n

)

!

,

x

R

\cos x =1-\frac{x^{2}}{2 !}+\frac{x^{4}}{4 !}-\frac{x^{6}}{6 !}+\frac{x^{8}}{8 !}-\cdots =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n) !}, \quad x \in R

cosx=1−2!x2​+4!x4​−6!x6​+8!x8​−⋯=n=0∑∞​(−1)n(2n)!x2n​,x∈R

sin

x

=

x

x

3

3

!

+

x

5

5

!

x

7

7

!

+

x

9

9

!

=

n

=

1

(

1

)

(

n

1

)

x

2

n

1

(

2

n

1

)

!

,

x

R

\sin x=x-\frac{x^{3}}{3 !}+\frac{x^{5}}{5 !}-\frac{x^{7}}{7 !}+\frac{x^{9}}{9 !}-\cdots =\sum_{n=1}^{\infty}(-1)^{(n-1)} \frac{x^{2 n-1}}{(2 n-1) !}, \quad x \in R

sinx=x−3!x3​+5!x5​−7!x7​+9!x9​−⋯=n=1∑∞​(−1)(n−1)(2n−1)!x2n−1​,x∈R

ln

(

1

+

x

)

=

x

x

2

2

+

x

3

3

x

4

4

+

x

5

5

=

n

=

1

(

1

)

(

n

1

)

x

n

n

=

or

n

=

1

(

1

)

n

+

1

x

n

n

,

(

x

(

1

,

1

]

)

\ln (1+x) =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\cdots =\sum_{n=1}^{\infty}(-1)^{(n-1)} \frac{x^{n}}{n} \stackrel{\text { or }}{=} \sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n},\quad (x \in(-1,1] )

ln(1+x)=x−2x2​+3x3​−4x4​+5x5​−⋯=n=1∑∞​(−1)(n−1)nxn​= or n=1∑∞​(−1)n+1nxn​,(x∈(−1,1])

tan

1

x

=

x

x

3

3

+

x

5

5

x

7

7

+

x

9

9

=

n

=

1

(

1

)

(

n

1

)

x

2

n

1

2

n

1

,

(

x

(

1

,

1

]

)

\tan ^{-1} x \quad =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\frac{x^{9}}{9}-\cdots =\sum_{n=1}^{\infty}(-1)^{(n-1)} \frac{x^{2 n-1}}{2 n-1} ,\quad (x \in(-1,1] )

tan−1x=x−3x3​+5x5​−7x7​+9x9​−⋯=n=1∑∞​(−1)(n−1)2n−1x2n−1​,(x∈(−1,1])

1

+

x

=

1

+

x

2

x

2

8

+

x

3

16

+

,

x

1

\sqrt{1+x}=1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}+\ldots,\quad x \geq -1

1+x

​=1+2x​−8x2​+16x3​+…,x≥−1

(

1

+

x

)

k

=

1

+

k

x

+

k

(

k

1

)

2

!

x

2

+

k

(

k

1

)

(

k

2

)

3

!

x

3

+

=

n

=

0

(

k

n

)

x

n

,

x

<

1

(1+x)^{k}=1+k x+\frac{k(k-1)}{2 !} x^{2}+\frac{k(k-1)(k-2)}{3 !} x^{3}+\ldots=\sum_{n=0}^{\infty}\left(\begin{array}{l} k \\ n \end{array}\right) x^{n}, \quad |x|< 1

(1+x)k=1+kx+2!k(k−1)​x2+3!k(k−1)(k−2)​x3+…=n=0∑∞​(kn​)xn,∣x∣<1

暂时写上这些,有空再来补充。

三、幂级数重要结论:在收敛域内可逐项求导和积分

例1:(

x

<

1

|x|<1

∣x∣<1)

1

(

1

x

)

2

=

d

d

x

(

1

1

x

)

=

d

d

x

(

n

=

0

x

n

)

=

n

=

1

n

x

n

1

=

1

+

2

x

+

3

x

2

+

4

x

3

+

\begin{aligned} \frac{1}{(1-x)^{2}} &=\frac{d}{d x}\left(\frac{1}{1-x}\right) \\ &=\frac{d}{d x}\left(\sum_{n=0}^{\infty} x^{n}\right) \\ &=\sum_{n=1}^{\infty} n x^{n-1} \\ &=1+2 x+3 x^{2}+4 x^{3}+\cdots \end{aligned}

(1−x)21​​=dxd​(1−x1​)=dxd​(n=0∑∞​xn)=n=1∑∞​nxn−1=1+2x+3x2+4x3+⋯​ 例2:(

x

<

1

|x|<1

∣x∣<1)

ln

(

1

+

x

)

=

1

1

+

x

d

x

=

(

n

=

0

(

1

)

n

x

n

)

d

x

=

(

n

=

0

(

1

)

n

x

n

+

1

n

+

1

)

+

C

=

n

=

0

(

1

)

n

x

n

+

1

n

+

1

=

x

x

2

2

+

x

3

3

x

4

4

+

\begin{aligned} \ln (1+x) &=\int \frac{1}{1+x} d x \\ &=\int\left(\sum_{n=0}^{\infty}(-1)^{n} x^{n}\right) d x \\ &=\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}\right)+C \\ &=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1} \\ &=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \end{aligned}

ln(1+x)​=∫1+x1​dx=∫(n=0∑∞​(−1)nxn)dx=(n=0∑∞​(−1)nn+1xn+1​)+C=n=0∑∞​(−1)nn+1xn+1​=x−2x2​+3x3​−4x4​+⋯​ 例3: 已知

d

d

x

tan

1

(

x

)

=

1

1

+

x

2

\frac{d}{d x} \tan ^{-1}(x)=\frac{1}{1+x^{2}}

dxd​tan−1(x)=1+x21​,

1

1

+

x

2

=

n

=

0

(

x

2

)

n

=

n

=

0

(

1

)

n

x

2

n

\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}

1+x21​=∑n=0∞​(−x2)n=∑n=0∞​(−1)nx2n,那么 KaTeX parse error: No such environment: eqnarray at position 8: \begin{̲e̲q̲n̲a̲r̲r̲a̲y̲}̲ \tan^{-… 由于

tan

1

(

0

)

=

0

\tan^{-1}(0)=0

tan−1(0)=0,因此

C

=

0

C=0

C=0,所以得到上面的公式:

tan

1

(

x

)

=

n

=

0

(

1

)

n

x

2

n

+

1

2

n

+

1

=

x

x

3

3

+

x

5

5

x

7

7

+

\tan^{-1}(x)= \sum_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{2n+1}=x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots

tan−1(x)=n=0∑∞​(−1)n2n+1x2n+1​=x−3x3​+5x5​−7x7​+⋯ 例4: 从

arctanh

x

\operatorname{arctanh} x

arctanhx 出发我们能推出些啥结论? (注意不是

arctan

\arctan

arctan, 而是

tanh

(

x

)

=

sinh

(

x

)

cosh

(

x

)

=

e

x

e

x

e

x

+

e

x

\tanh (x)=\frac{\sinh (x)}{\cosh (x)}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}

tanh(x)=cosh(x)sinh(x)​=ex+e−xex−e−x​的反函数)

f

(

x

)

=

arctanh

x

f

(

x

)

=

1

1

x

2

f

(

x

)

=

2

x

(

1

x

2

)

2

f

(

x

)

=

2

(

1

x

2

)

2

8

x

2

(

1

x

2

)

3

\begin{aligned} f(x) &=\operatorname{arctanh} x \\ f^{\prime}(x) &=\frac{1}{1-x^{2}} \\ f^{\prime \prime}(x) &=\frac{2 x}{\left(1-x^{2}\right)^{2}} \\ f^{\prime \prime \prime}(x) &=\frac{2}{\left(1-x^{2}\right)^{2}}-\frac{8 x^{2}}{\left(1-x^{2}\right)^{3}} \end{aligned}

f(x)f′(x)f′′(x)f′′′(x)​=arctanhx=1−x21​=(1−x2)22x​=(1−x2)22​−(1−x2)38x2​​ 注意到

arctanh

x

=

1

1

x

2

=

n

=

0

x

2

n

,

(

x

<

1

)

\operatorname{arctanh} x = \frac{1}{1-x^2} = \sum_{n=0}^{\infty} x^{2n},(|x|<1)

arctanhx=1−x21​=∑n=0∞​x2n,(∣x∣<1), 可以得出:

arctanh

x

=

0

x

(

1

+

t

2

+

t

4

+

)

d

t

=

x

+

x

3

3

+

x

5

5

+

\operatorname{arctanh} x=\int_{0}^{x}\left(1+t^{2}+t^{4}+\ldots\right) d t=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots

arctanhx=∫0x​(1+t2+t4+…)dt=x+3x3​+5x5​+… 当然还没结束:

f

(

x

)

=

log

1

+

x

1

x

=

1

2

log

(

1

+

x

)

1

2

log

(

1

x

)

=

1

2

0

x

(

1

1

+

t

+

1

1

t

)

d

t

=

0

x

d

t

1

t

2

=

0

x

(

1

+

t

2

+

t

4

+

)

d

t

=

x

+

x

3

3

+

x

5

5

+

=

arctanh

x

\begin{aligned} f(x) &=\log \sqrt{\frac{1+x}{1-x}}\\ &=\frac{1}{2} \log (1+x)-\frac{1}{2} \log (1-x) \\ &=\frac{1}{2} \int_{0}^{x}\left(\frac{1}{1+t}+\frac{1}{1-t}\right) d t \\ &=\int_{0}^{x} \frac{d t}{1-t^{2}} \\ &=\int_{0}^{x}\left(1+t^{2}+t^{4}+\ldots\right) d t \\ &=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots \\ &=\operatorname{arctanh} x \end{aligned}

f(x)​=log1−x1+x​

​=21​log(1+x)−21​log(1−x)=21​∫0x​(1+t1​+1−t1​)dt=∫0x​1−t2dt​=∫0x​(1+t2+t4+…)dt=x+3x3​+5x5​+…=arctanhx​

四、用幂级数求数项级数的和

例5: 求

n

=

1

n

3

n

\sum_{n=1}^{\infty} \frac{n}{3^{n}}

∑n=1∞​3nn​

f

(

x

)

=

n

=

0

n

x

n

f

(

x

)

x

=

n

=

0

n

x

n

1

f

(

x

)

x

d

x

=

C

+

n

=

0

x

n

f

(

x

)

x

d

x

=

C

+

1

1

x

d

d

x

f

(

x

)

x

d

x

=

1

(

1

x

)

2

f

(

x

)

x

=

1

(

1

x

)

2

f

(

x

)

=

x

(

1

x

)

2

\begin{aligned} \quad f(x)&= \sum_{n=0}^{\infty} nx^n \\ \quad \frac{f(x)}{x}&= \sum_{n=0}^{\infty} nx^{n-1} \\ \quad \int \frac{f(x)}{x} \: dx&= C + \sum_{n=0}^{\infty} x^n \\ \quad \int \frac{f(x)}{x} \: dx&= C + \frac{1}{1 - x} \\ \quad \frac{d}{dx} \int \frac{f(x)}{x} \: dx&=-\frac{1}{(1 - x)^2} \\ \quad \frac{f(x)}{x}&= \frac{1}{(1 - x)^2} \\ \quad f(x)&= \frac{x}{(1 - x)^2} \end{aligned}

f(x)xf(x)​∫xf(x)​dx∫xf(x)​dxdxd​∫xf(x)​dxxf(x)​f(x)​=n=0∑∞​nxn=n=0∑∞​nxn−1=C+n=0∑∞​xn=C+1−x1​=−(1−x)21​=(1−x)21​=(1−x)2x​​ 由于它在

x

<

1

\mid x \mid < 1

∣x∣<1内收敛,因此可令

x

=

1

3

x=\frac{1}{3}

x=31​,有

f

(

1

3

)

=

1

3

(

2

3

)

2

=

n

=

0

n

3

n

=

n

=

1

n

3

n

=

3

4

f\left ( \frac{1}{3} \right ) = \frac{\frac{1}{3}}{\left ( \frac{2}{3} \right )^2} = \sum_{n=0}^{\infty} \frac{n}{3^n} = \sum_{n=1}^{\infty} \frac{n}{3^n} = \frac{3}{4}

f(31​)=(32​)231​​=n=0∑∞​3nn​=n=1∑∞​3nn​=43​

例6:

n

=

0

(

n

+

1

)

2

π

n

\sum_{n=0}^{\infty} \frac{(n+1)^2}{\pi^n}

∑n=0∞​πn(n+1)2​

f

(

x

)

=

n

=

0

(

n

+

1

)

2

x

n

f

(

x

)

d

x

=

C

+

n

=

0

(

n

+

1

)

x

n

+

1

f

(

x

)

d

x

x

=

C

x

+

n

=

0

(

n

+

1

)

x

n

f

(

x

)

d

x

x

d

x

=

D

+

C

x

d

x

+

n

=

0

x

n

+

1

f

(

x

)

d

x

x

d

x

=

D

+

C

x

d

x

+

x

n

=

0

x

n

f

(

x

)

d

x

x

d

x

=

D

+

C

x

d

x

+

x

1

x

f

(

x

)

d

x

x

=

C

x

+

(

1

x

)

(

1

)

x

(

1

)

(

1

x

)

2

f

(

x

)

d

x

x

=

C

x

+

1

(

1

x

)

2

f

(

x

)

d

x

=

C

+

x

(

1

x

)

2

f

(

x

)

=

(

1

x

)

2

(

1

)

x

(

2

(

1

x

)

(

1

)

)

(

1

x

)

4

f

(

x

)

=

(

1

x

)

2

+

2

x

(

1

x

)

(

1

x

)

4

f

(

x

)

=

(

1

x

)

+

2

x

(

1

x

)

3

\begin{aligned} \quad f(x)&= \sum_{n=0}^{\infty} (n + 1)^2 x^n \\ \quad \int f(x) \: dx&= C + \sum_{n=0}^{\infty} (n+1)x^{n+1} \\ \quad \frac{\int f(x) \: dx}{x}&= \frac{C}{x} + \sum_{n=0}^{\infty} (n+1) x^n \\ \quad \int \frac{\int f(x) \: dx}{x} \: dx&= D + \int \frac{C}{x} \: dx + \sum_{n=0}^{\infty} x^{n+1} \\ \quad \int \frac{\int f(x) \: dx}{x} \: dx&= D + \int \frac{C}{x} \: dx + x \sum_{n=0}^{\infty} x^n \\ \quad \int \frac{\int f(x) \: dx}{x} \: dx&= D + \int \frac{C}{x} \: dx + \frac{x}{1 - x} \\ \quad \frac{\int f(x) \: dx}{x}&= \frac{C}{x} + \frac{(1 - x)(1) - x(-1)}{(1 - x)^2} \\ \quad \frac{\int f(x) \: dx}{x}&= \frac{C}{x} + \frac{1}{(1 - x)^2} \\ \quad \int f(x) \: dx&= C + \frac{x}{(1 - x)^2} \\ \quad f(x)&= \frac{(1 - x)^2(1) - x(2(1 - x)(-1))}{(1 - x)^4} \\ \quad f(x)&= \frac{(1 - x)^2 + 2x(1 - x)}{(1 - x)^4} \\ \quad f(x)&= \frac{(1 - x) + 2x}{(1 - x)^3} \end{aligned}

f(x)∫f(x)dxx∫f(x)dx​∫x∫f(x)dx​dx∫x∫f(x)dx​dx∫x∫f(x)dx​dxx∫f(x)dx​x∫f(x)dx​∫f(x)dxf(x)f(x)f(x)​=n=0∑∞​(n+1)2xn=C+n=0∑∞​(n+1)xn+1=xC​+n=0∑∞​(n+1)xn=D+∫xC​dx+n=0∑∞​xn+1=D+∫xC​dx+xn=0∑∞​xn=D+∫xC​dx+1−xx​=xC​+(1−x)2(1−x)(1)−x(−1)​=xC​+(1−x)21​=C+(1−x)2x​=(1−x)4(1−x)2(1)−x(2(1−x)(−1))​=(1−x)4(1−x)2+2x(1−x)​=(1−x)3(1−x)+2x​​ 由于级数

f

(

x

)

=

n

=

0

(

n

+

1

)

2

x

n

f(x) = \sum_{n=0}^{\infty} (n + 1)^2 x^n

f(x)=∑n=0∞​(n+1)2xn的收敛域也是

x

<

1

\mid x \mid < 1

∣x∣<1,因此可令

x

=

1

π

x=\frac{1}{\pi}

x=π1​,于是有

f

(

1

π

)

=

n

=

0

(

n

+

1

)

2

π

n

=

(

1

1

π

)

+

2

π

(

1

1

π

)

3

\quad f \left ( \frac{1}{\pi} \right ) = \sum_{n=0}^{\infty} \frac{(n + 1)^2}{\pi^n} = \frac{\left (1 - \frac{1}{\pi} \right ) + \frac{2}{\pi}}{\left (1 - \frac{1}{\pi} \right )^3}

f(π1​)=n=0∑∞​πn(n+1)2​=(1−π1​)3(1−π1​)+π2​​

五、用幂级数求数列通项公式

幂级数还可以用来求数列的通项公式,基本的思路为:

这种方法又称母函数法,通常见于组合数学。

例7. 求Fibonacci数列的通项公式:

先设:

s

(

x

)

=

k

=

0

F

k

x

k

s(x)=\sum_{k=0}^{\infty} F_{k} x^{k}

s(x)=k=0∑∞​Fk​xk

考虑Fibonacci的定义

F

n

=

F

n

1

+

F

n

2

F_n=F_{n-1}+F_{n-2}

Fn​=Fn−1​+Fn−2​,有

s

(

x

)

=

k

=

0

F

k

x

k

=

F

0

+

F

1

x

+

k

=

2

(

F

k

1

+

F

k

2

)

x

k

=

x

+

k

=

2

F

k

1

x

k

k

=

2

F

k

2

x

k

=

x

+

x

k

=

0

F

k

x

k

+

x

2

k

=

0

F

k

x

k

=

x

+

x

s

(

x

)

+

x

2

s

(

x

)

\begin{aligned} s(x) &=\sum_{k=0}^{\infty} F_{k} x^{k} \\ &=F_{0}+F_{1} x+\sum_{k=2}^{\infty}\left(F_{k-1}+F_{k-2}\right) x^{k} \\ &=x+\sum_{k=2}^{\infty} F_{k-1} x^{k}-\sum_{k=2}^{\infty} F_{k-2} x^{k} \\ &=x+x \sum_{k=0}^{\infty} F_{k} x^{k}+x^{2} \sum_{k=0}^{\infty} F_{k} x^{k} \\ &=x+x s(x)+x^{2} s(x) \end{aligned}

s(x)​=k=0∑∞​Fk​xk=F0​+F1​x+k=2∑∞​(Fk−1​+Fk−2​)xk=x+k=2∑∞​Fk−1​xk−k=2∑∞​Fk−2​xk=x+xk=0∑∞​Fk​xk+x2k=0∑∞​Fk​xk=x+xs(x)+x2s(x)​ 解出

s

(

x

)

s(x)

s(x)

s

(

x

)

=

x

1

x

x

2

=

x

x

2

+

x

1

s(x)=\frac{x}{1-x-x^{2}}=\frac{-x}{x^{2}+x-1}

s(x)=1−x−x2x​=x2+x−1−x​ 又:

x

1

x

x

2

=

x

(

1

φ

x

)

(

1

ψ

x

)

=

1

5

1

φ

x

+

1

5

1

ψ

x

=

1

5

(

1

1

φ

x

1

1

ψ

x

)

\frac{x}{1-x-x^{2}}=\frac{x}{(1-\varphi x)(1-\psi x)} =\frac{\frac{1}{\sqrt{5}}}{1-\varphi x}+\frac{-\frac{1}{\sqrt{5}}}{1-\psi x}=\frac{1}{\sqrt{5}}\left(\frac{1}{1-\varphi x}-\frac{1}{1-\psi x}\right)

1−x−x2x​=(1−φx)(1−ψx)x​=1−φx5

​1​​+1−ψx−5

​1​​=5

​1​(1−φx1​−1−ψx1​) 注意到

φ

,

ψ

\varphi,\psi

φ,ψ很好求,它们是分母的根:

φ

=

1

+

5

2

,

ψ

=

1

5

2

\varphi=\frac{1+\sqrt{5}}{2}, \quad \psi=\frac{1-\sqrt{5}}{2}

φ=21+5

​​,ψ=21−5

​​ 再代回上式得到:

s

(

x

)

=

1

5

(

1

1

φ

x

1

1

ψ

x

)

=

1

5

(

n

=

0

φ

n

x

n

n

=

0

ψ

n

x

n

)

=

1

5

(

n

=

0

(

φ

n

ψ

n

)

x

n

)

=

k

=

0

F

k

x

k

\begin{aligned} s(x) &=\frac{1}{\sqrt{5}}\left(\frac{1}{1-\varphi x}-\frac{1}{1-\psi x}\right) \\ &=\frac{1}{\sqrt{5}}\left(\sum_{n=0}^{\infty} \varphi^{n} x^{n}-\sum_{n=0}^{\infty} \psi^{n} x^{n}\right) \\ &=\frac{1}{\sqrt{5}}\left(\sum_{n=0}^{\infty}\left(\varphi^{n}-\psi^{n}\right) x^{n}\right)=\sum_{k=0}^{\infty} F_{k} x^{k} \end{aligned}

s(x)​=5

​1​(1−φx1​−1−ψx1​)=5

​1​(n=0∑∞​φnxn−n=0∑∞​ψnxn)=5

​1​(n=0∑∞​(φn−ψn)xn)=k=0∑∞​Fk​xk​ 因此:

F

n

=

φ

n

ψ

n

5

=

φ

n

(

φ

)

n

5

=

1

5

[

(

1

+

5

2

)

n

(

1

5

2

)

n

]

F_{n}=\frac{\varphi^{n}-\psi^{n}}{\sqrt{5}}=\frac{\varphi^{n}-(-\varphi)^{-n}}{\sqrt{5}}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^n-\left(\frac{1-\sqrt{5}}{2}\right)^n\right]

Fn​=5

​φn−ψn​=5

​φn−(−φ)−n​=5

​1​[(21+5

​​)n−(21−5

​​)n]

六、用幂级数解微分方程

例8. 考虑一个简单的方程:

y

+

y

=

0

y'' + y = 0

y′′+y=0 设它的解为一个幂级数:

y

(

x

)

=

n

=

0

a

n

x

n

y\left( x \right) = \sum\limits_{n = 0}^\infty {{a_n}{x^n}}

y(x)=n=0∑∞​an​xn 考虑:

y

(

x

)

=

n

=

1

n

a

n

x

n

1

y

(

x

)

=

n

=

2

n

(

n

1

)

a

n

x

n

2

y'\left( x \right) = \sum\limits_{n = 1}^\infty {n{a_n}{x^{n - 1}}} \hspace{0.25in}y''\left( x \right) = \sum\limits_{n = 2}^\infty {n\left( {n - 1} \right){a_n}{x^{n - 2}}}

y′(x)=n=1∑∞​nan​xn−1y′′(x)=n=2∑∞​n(n−1)an​xn−2 带回原方程得到:

n

=

2

n

(

n

1

)

a

n

x

n

2

+

n

=

0

a

n

x

n

=

0

\sum\limits_{n = 2}^\infty {n\left( {n - 1} \right){a_n}{x^{n - 2}}} + \sum\limits_{n = 0}^\infty {{a_n}{x^n}} = 0

n=2∑∞​n(n−1)an​xn−2+n=0∑∞​an​xn=0 对第一项的系数进行一下调整:

n

=

0

(

n

+

2

)

(

n

+

1

)

a

n

+

2

x

n

+

n

=

0

a

n

x

n

=

0

\sum\limits_{n = 0}^\infty {\left( {n + 2} \right)\left( {n + 1} \right){a_{n + 2}}{x^n}} + \sum\limits_{n = 0}^\infty {{a_n}{x^n}} = 0

n=0∑∞​(n+2)(n+1)an+2​xn+n=0∑∞​an​xn=0

实际上就是将

n

=

2

n

(

n

1

)

a

n

x

n

2

\sum\limits_{n = 2}^\infty {n\left( {n - 1} \right){a_n}{x^{n - 2}}}

n=2∑∞​n(n−1)an​xn−2 中的

n

n

n 换成

n

2

n-2

n−2.

整理得到:

n

=

0

[

(

n

+

2

)

(

n

+

1

)

a

n

+

2

+

a

n

]

x

n

=

0

\sum\limits_{n = 0}^\infty {\left[ {\left( {n + 2} \right)\left( {n + 1} \right){a_{n + 2}} + {a_n}} \right]{x^n}} = 0

n=0∑∞​[(n+2)(n+1)an+2​+an​]xn=0 接下来就有意思了,由于上面的幂级数必须为零,它又是无穷级数,因此每项系数必为0:

(

n

+

2

)

(

n

+

1

)

a

n

+

2

+

a

n

=

0

,

n

=

0

,

1

,

2

,

\left( {n + 2} \right)\left( {n + 1} \right){a_{n + 2}} + {a_n} = 0,\hspace{0.25in}n = 0,1,2, \ldots

(n+2)(n+1)an+2​+an​=0,n=0,1,2,… 由上式可以总结出以下规律:

a

2

k

=

(

1

)

k

a

0

(

2

k

)

!

,

k

=

1

,

2

,

a

2

k

+

1

=

(

1

)

k

a

1

(

2

k

+

1

)

!

,

k

=

1

,

2

,

a_{2 k}=\frac{(-1)^{k} a_{0}}{(2 k) !}, \quad k=1,2, \ldots \quad a_{2 k+1}=\frac{(-1)^{k} a_{1}}{(2 k+1) !}, \quad k=1,2, \ldots

a2k​=(2k)!(−1)ka0​​,k=1,2,…a2k+1​=(2k+1)!(−1)ka1​​,k=1,2,… 接下来的事情虽然看似麻烦,但仍然清楚:

y

(

x

)

=

n

=

0

a

n

x

n

=

a

0

+

a

1

x

+

a

2

x

2

+

a

3

x

3

+

+

a

2

k

x

2

k

+

a

2

k

+

1

x

2

k

+

1

+

=

a

0

+

a

1

x

a

0

2

!

x

2

a

1

3

!

x

3

+

+

(

1

)

k

a

0

(

2

k

)

!

x

2

k

+

(

1

)

k

a

1

(

2

k

+

1

)

!

x

2

k

+

1

+

\begin{aligned}y\left( x \right) & = \sum\limits_{n = 0}^\infty {{a_n}{x^n}} \\ & = {a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3} + \cdots + {a_{2k}}{x^{2k}} + {a_{2k + 1}}{x^{2k + 1}} + \cdots \\ & = {a_0} + {a_1}x - \frac{{{a_0}}}{{2!}}{x^2} - \frac{{{a_1}}}{{3!}}{x^3} + \cdots + \frac{{{{\left( { - 1} \right)}^k}{a_0}}}{{\left( {2k} \right)!}}{x^{2k}} + \frac{{{{\left( { - 1} \right)}^k}{a_1}}}{{\left( {2k + 1} \right)!}}{x^{2k + 1}} + \cdots \end{aligned}

y(x)​=n=0∑∞​an​xn=a0​+a1​x+a2​x2+a3​x3+⋯+a2k​x2k+a2k+1​x2k+1+⋯=a0​+a1​x−2!a0​​x2−3!a1​​x3+⋯+(2k)!(−1)ka0​​x2k+(2k+1)!(−1)ka1​​x2k+1+⋯​ 再重新整理:

y

(

x

)

=

a

0

{

1

x

2

2

!

+

(

1

)

k

x

2

k

(

2

k

)

!

+

}

+

a

1

{

x

x

3

3

!

+

+

(

1

)

k

(

2

k

+

1

)

!

x

2

k

+

1

+

}

=

a

0

k

=

0

(

1

)

k

x

2

k

(

2

k

)

!

+

a

1

k

=

0

(

1

)

k

x

2

k

+

1

(

2

k

+

1

)

!

\begin{aligned}y\left( x \right) & = {a_0}\left\{ {1 - \frac{{{x^2}}}{{2!}} \cdots + \frac{{{{\left( { - 1} \right)}^k}{x^{2k}}}}{{\left( {2k} \right)!}} + \cdots } \right\} + {a_1}\left\{ {x - \frac{{{x^3}}}{{3!}} + \cdots + \frac{{{{\left( { - 1} \right)}^k}}}{{\left( {2k + 1} \right)!}}{x^{2k + 1}} + \cdots } \right\}\\ & = {a_0}\sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}{x^{2k}}}}{{\left( {2k} \right)!}}} + {a_1}\sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}{x^{2k + 1}}}}{{\left( {2k + 1} \right)!}}} \end{aligned}

y(x)​=a0​{1−2!x2​⋯+(2k)!(−1)kx2k​+⋯}+a1​{x−3!x3​+⋯+(2k+1)!(−1)k​x2k+1+⋯}=a0​k=0∑∞​(2k)!(−1)kx2k​+a1​k=0∑∞​(2k+1)!(−1)kx2k+1​​ 注意到:

cos

(

x

)

=

n

=

0

(

1

)

n

x

2

n

(

2

n

)

!

sin

(

x

)

=

n

=

0

(

1

)

n

x

2

n

+

1

(

2

n

+

1

)

!

\cos \left( x \right) = \sum\limits_{n = 0}^\infty {\frac{{{{\left( { - 1} \right)}^n}{x^{2n}}}}{{\left( {2n} \right)!}}} \hspace{0.25in}\sin \left( x \right) = \sum\limits_{n = 0}^\infty {\frac{{{{\left( { - 1} \right)}^n}{x^{2n + 1}}}}{{\left( {2n + 1} \right)!}}}

cos(x)=n=0∑∞​(2n)!(−1)nx2n​sin(x)=n=0∑∞​(2n+1)!(−1)nx2n+1​ 因此:

y

(

x

)

=

c

1

cos

(

x

)

+

c

2

sin

(

x

)

y\left( x \right) = {c_1}\cos \left( x \right) + {c_2}\sin \left( x \right)

y(x)=c1​cos(x)+c2​sin(x)

这个例子只是一个比较简单的问题。当然完全可以直接用简单的方法求解。但这种方法在求解其它更为复杂的非线性方程的时候十分有用,因为对于许多方程它并不一定有初等表达式。但如果其幂级数解存在的话,那么就可以对它进行近似计算。这种数值计算方法通常又比普通的差分法要精确得多,目前也是计算数学界较为主流的一种方法。

参考资料:

http://people.math.sc.edu/girardi/m142/handouts/10sTaylorPolySeries.pdf

https://math.berkeley.edu/~neu/undergrad_chap1.pdf

https://www.math.cuhk.edu.hk/course_builder/1516/math1010c/Power_series.pdf

https://web.ma.utexas.edu/users/m408s/CurrentWeb/LM14-3-10.php

[http://math.caltech.edu/syye/teaching/courses/Ma8_2015/Lecture%20Notes/ma8_wk10.pdf](http://math.caltech.edu/syye/teaching/courses/Ma8_2015/Lecture Notes/ma8_wk10.pdf)

https://tutorial.math.lamar.edu/classes/de/seriessolutions.aspx